MATH 504 HOMEWORK 7

Due Friday, April 23.

Problem 1. Suppose that \mathbb{P}, \mathbb{Q} are two posets in the ground model V and $\pi : \mathbb{P} \to \mathbb{Q}$ is a projection, *i.e.*

(1) π is order preserving: $p' \leq p \rightarrow \pi(p') \leq \pi(p)$,

(2) for all $p \in \mathbb{P}$ and $q \leq \pi(p)$, there is $p' \leq p$, such that $\pi(p') \leq q$.

Suppose that G is a \mathbb{P} -generic filer over V. Show that $H := \{q \mid \exists p \in G, \pi(p) \leq q\}$ is a \mathbb{Q} -generic filter over V.

Problem 2. Suppose that \mathbb{P} is a poset, such that for every $p \in \mathbb{P}$, there are incompatible conditions $q, r \leq p$. Let G be \mathbb{P} -generic. Show that $G \times G$ is not $\mathbb{P} \times \mathbb{P}$ -generic.

Problem 3. Let κ be a regular uncountable cardinal and \mathbb{P} be a κ -closed poset. Show that \mathbb{P} preserves stationary subsets of κ , i.e. if $S \subset \kappa$ is stationary in the ground model, then S remains stationary in any \mathbb{P} -generic extension.

Hint: Given S, a name \dot{C} , and p, such that $p \Vdash ``\dot{C}$ is a club subset of κ ", show there is a sequence in the ground model $\langle p_{\alpha}, \gamma_{\alpha} \mid \alpha < \kappa \rangle$, such that:

- $\langle p_{\alpha} \mid \alpha < \kappa \rangle$ is a decreasing sequence below p,
- $\langle \gamma_{\alpha} \mid \alpha < \kappa \rangle$ is a club in κ ,
- each $p_{\alpha} \Vdash \gamma_{\alpha} \in C$.

Then use stationarity of S in the ground model.

Problem 4. Let $S \subset \omega_1$ be a stationary set. Define $\mathbb{P} := \{p \subset S \mid p \text{ is closed and bounded}\}$, and set $p \leq q$ if p end extends q i.e. for some α , $p \cap \alpha = q$. Suppose that $T := S \setminus \omega_1$ is also stationary. Let G be a \mathbb{P} -generic filter. Show that in V[G], T is nonstationary.

The above is an example of a forcing that destroys a stationary set, without collapsing cardinals (we will show that in class, using that S is stationary). On the other hand you cannot destroy a club set:

Problem 5. If $V \subset W$ are two models of set theory and $V \models "D$ is club in κ ", then $W \models "D$ is club in κ ".